

TRAVAUX DIRIGES 2023-2024

Organisés par la Mairie de Cotonou Sous le haut patronage du Maire *Luc Sètondji ATROKPO*

BEPC: 2024

Classe: Troisième

Durée: 2h

TD du 25/05/2024

<u>CLE DE CORRECTION</u>: MATHEMATIQUES

ELEMENTS DE REPONSES	Capacité analyser (Ca) Le candidat identifie :	Capacité mathématiser (Cm) Le candidat :	Capacité opérer (Co) Le candidat trouve :	Points
Problèmes 1				18pts
1) Je représente graphiquement les solutions du système (S) Pour $x = 0$ et $y = 0$, le système (S) devient $\begin{cases} 0 \le 5 \\ 0 \le 8 \end{cases}$ Alors le couple (0 ; 0) est solution du système (S). Traçons les droites (D_1) et (D_2) d'équations respectives $x + y = 5$ et $x + 2y = 8$ dans le plan. (D_1) $x $	• Le système	 Construit le repère I Trace les droites I I Recherche les parties solutions I 	Hachure les partie non solutions délimitées par les droites : • (D_2) • (D_2)	

	I		III	
L'ensemble des couples $(x; y)$ appartenant à la partie non hachurée du	0,5pt	4pts	3pts	07,5pts
plan y compris des couples $(x; y)$ des droites (D_1) et (D_2) de cette				
partie est l'ensemble des solutions du système (S)				
2-a) Je traduis les informations par un système d'inéquations Soit x le nombre de colliers et y le nombre de robes que Fati peut acheter On a : (S) : $\begin{cases} 3\ 000x + 6\ 000y \le 24\ 000 \\ x + y \le 5 \\ x \ge 1 \\ y \ge 1 \end{cases}$	• x,y • les valeurs 3 000; 6 000; 24 000 et 5		Trouve le systèmeIIII4pts	5pts
b) Je donne les possibilités d'achat qui s'offrent à Fati si elle doit				
acheter au moins deux colliers et deux robes $(S) \text{ équivaut à : } \begin{cases} x+2y \leq 8 \\ x+y \leq 5 \\ x \geq 1 \\ y \geq 1 \end{cases}$ Comme Fati doit acheter au moins deux colliers et deux robes, alors on obtient le système (S') suivant : $\begin{cases} x+2y \leq 8 \\ x+y \leq 5 \\ x \geq 2 \\ y \geq 2 \end{cases}$	• Le système (S)	Ecrit • (S) $\begin{cases} x + 2y \le 8 \\ x + y \le 5 \end{cases}$ • $\begin{cases} x \ge 2 \\ y \ge 2 \end{cases}$	 Deux colliers et deux rôles Deux colliers et trois robes Trois colliers et deux robes 	

Ainsi l'ensemble des solutions du système (S') revient à l'ensemble des solutions du système (S') avec pour conditions $x \ge 2$ et $y \ge 2$ Donc graphiquement les possibilités d'achat qui s'offre à Fati sont :				
- Deux colliers et deux robes				
- Deux colliers et trois robes	I	II	III	
- Trois colliers et deux robes	0,5pt	2pts	3pts	5, 5 <i>pts</i>
Problème 2				15, 5 <i>pts</i>
3) Je calcule le coefficient de réduction commun k du cône ou de la	• 3 et 4	Pose	\bullet $k = \frac{3}{4}$	
pyramide ayant permis d'obtenir chacun de deux modèles de		\bullet $k = \frac{3}{4}$	4	
<u>château</u>	I	4	I	
$k = \frac{3}{4}$	0,5pt	1pt	1pt	2, 5 <i>pts</i>
4-a) Je justifie que la hauteur h du modèle 1 du château d'eau est	• $II' = 1.25m$	Utilise une méthode	• $h = 0.75m$	
<u>0,75 m</u>	• $R_1 = 5m$	appropriée pour calculer la	·	
Soit R_1 et r_1 les rayons respectifs des bases du tronc de cône	• $r_1 = 3m$	hauteur <i>h</i>		
$II'^2 = h^2 + (R_1 - r_1)^2$				
$h^2 = II'^2 - (R_1 - r_1)^2$				
$h = \sqrt{II'^2 - (R_1 - r_1)^2}$	III	I	I	
$h = \sqrt{(1,25)^2 - (4-3)^2}$	1, 5 <i>pts</i>	1pt	1pt	3, 5 <i>pts</i>
$h = \sqrt{0.5625 - 1}$				
h = 0.75 m				
b) Je calcule la quantité maximale d'eau que peut contenir le	• 0,75 <i>m</i>	• $V_1 = \frac{h\pi}{3}(r_1^2 + R_1^2 + R_1r_1)$	• $V_1 = 29,04 m^3$	
modèle 1	• 3 <i>m</i>	3 (1 1 1 1 1)		
Soit V_1 cette quantité d'eau	• 4 <i>m</i>			
$V_1 = \frac{h\pi}{3}(r_1^2 + R_1^2 + R_1r_1)$				
$V_1 = \frac{0.75 \times 3.14}{3} (3^2 + 4^2 + 3 \times 4)$	III	1	I	
3	1, 5 <i>pts</i>	1pt	1pt	3,5 <i>pts</i>
$V_1 = 29,04 m^3$		•	2	_
5) Je détermine modèle ayant le plus grand volume	• 0,75 m	Ecrit	• $V_2 = 9.25 m^3$	
Je détermine d'abord la quantité maximale V ₂ que peut	• 3 m	• $V_2 = \frac{h_2}{3} (\mathcal{A}_2 + \mathcal{A}'_2 +$	• Le modèle à	
<u>contenir le modèle 2</u>	• 4 m	$\sqrt{\mathcal{A}_2\mathcal{A}'_2}$	choisir est le	
		,	modèle 1	

V_1 et V_2	• $V_2 < V_1$ II $2pts$	II 2pts	6pts
			56, 5 <i>pts</i>
\overrightarrow{OA}	Etablit	• $A(-2;-1)$	
\overrightarrow{BO}	$\bullet \overrightarrow{OA} = -2\overrightarrow{OI} - \overrightarrow{OJ}$	• $B(-5;3)$	
\overrightarrow{AC}		• C(3;9)	
\overrightarrow{OD}	$\bullet \overrightarrow{OB} = -5\overrightarrow{OI} + 3\overrightarrow{OJ}$	• D(2;2)	
	• $\overrightarrow{OC} = 3\overrightarrow{OI} + 9\overrightarrow{OJ}$		
	$\bullet \overrightarrow{OD} = 2\overrightarrow{OI} + 2\overrightarrow{OJ}$		
		1111	
2pts	4 <i>pts</i>		10pts
		ipts	-
I	I $2pts$ \overrightarrow{OA} \overrightarrow{BO} \overrightarrow{AC} \overrightarrow{OD}	I 2pts Etablit $\overrightarrow{OA} = -2\overrightarrow{OI} - \overrightarrow{OJ}$ $\overrightarrow{AC} = \overrightarrow{OD} = 3\overrightarrow{OI} + 9\overrightarrow{OJ}$ I III	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

-a) J'écris l'application f définie sur \mathbb{R} , représentée dans le repère	Les coordonnées	Ecrit	• a = 2	
(0,I,I) par la droite (AC)	des points A et C	$\bullet (AC): y = ax + b$	• $b = 3$	
Puisque $x_C \neq x_A$ on a (AC) : $y = ax + b$	·	$\bullet a = \frac{y_C - y_A}{x_C - x_A}$	$\bullet (AC): y =$	
		$\bullet b = y_A - 2x_A$	2x + 3	
$a = \frac{y_C - y_A}{x_C - x_A}$ $a = \frac{10}{5}$		$\bullet b = y_A - 2x_A$	$\bullet f(x) = 2x + 3$	
5				
a=2				
$A\binom{-2}{-1} \in (AC)$ équivaut successivement à : $y_A = 2x_A + b$		111	1111	
$b = y_A - 2x_A$	I		1111	
b = -1 - 2(-2)			4pts	
b = 3 Ainsi (AC) : y = 2x + 3	0,5 <i>pts</i>	3pts	+μισ	7, 5 <i>pts</i>
D'où l'application f définie sur \mathbb{R} est telle que : $f(x) = 2x + 3$		•		
b-) J'en déduis sa nature et son sens de variation	\bullet $f(x)$	Ecrit	• f est strictement	
• $f(x) = 2x + 3$ alors f est une application affine		• Pour $a > 0$, Quand x	croissante sur $\mathbb R$	
Comme $2>0$ alors f est strictement croissante sur $\mathbb R$	I 0,5pt	augment $f(x)$ aussi augment	I 1mt	2, 5 <i>pts</i>
		I 1pt	I 1pt	
8-a) Je calcule les longueurs AB, AC et BC	Les coordonnées	Pose	• $AB = 5 dam$	
• $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$;	des points :	• AB =	• AC =	
$AB = \sqrt{(-5+2)^2 + (3+1)^2}$;		$\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ • $AC =$	$5\sqrt{5} dam$	
$AB = \sqrt{25}$;			• $BC = 10 dam$	
AB = 5 dam;		$\sqrt{(x_c - x_A)^2 + (y_c - y_A)^2}$		
• $AC = \sqrt{(x_c - x_A)^2 + (y_c - y_A)^2}$	• A • B	• BC =		
$AC = \sqrt{(3+2)^2 + (9+1)^2};$	• C	$\sqrt{(x_c - x_B)^2 + (y_c - y_B)^2}$		
$AC = \sqrt{125};$				
$AC = 5\sqrt{5} \ dam \ ;$				
• $BC = \sqrt{(x_c - x_B)^2 + (y_c - y_B)^2}$				
$BC = \sqrt{(5+3)^2 + (9-3)^2}$;	III	III	III	
$BC = \sqrt{100}$;			3pts	
$BC = 10 \ dam$;	1,5pts	3pts		7,5 pts
b-) J'en déduis la nature du triangle ABC	Les longueurs :	Utilise la réciproque de la	$\bullet AB^2 = 25 \ dam^2$	
$AB^2 = 25 \ dam^2$			$\bullet AC^2 =$	

$AC^2=125\ dam^2$ $BC^2=100\ dam^2$ Donc on a : $125=100+25$; c'est-à-dire : $AC^2=BC^2+AB^2$ D'après la réciproque de la propriété de Pythagore, le triangle ABC est rectangle en B	 AB AC BC III 1,5pts 	propriété de Pythagore I 1pt	125 dam ² • BC ² = 100 dam ² • ABC est un triangle rectangle en B IIII 4pts	6, 5 <i>pts</i>
c) Je détermine les coordonnées du point E E étant le milieu de l'hypoténuse $[AC]$ du triangle ABC , alors $E\left(\frac{x_A+x_C}{2};\frac{y_A+y_C}{2}\right)$ $E\left(\frac{-2+3}{2};\frac{-1+9}{2}\right)$ Donc $E\left(\frac{1}{2};4\right)$	 Les coordonnées des points A et C I 0,5pt 	Ecrit • $E\left(\frac{x_A+x_C}{2}; \frac{y_A+y_C}{2}\right)$ I $1pt$	• $E\left(\frac{1}{2};4\right)$ I 1pt	2,5pts
9-a) Je justifie que les droites (BC) et (AD) sont parallèles $\overrightarrow{BC}\begin{pmatrix} x_C-x_B\\ y_C-y_B \end{pmatrix}$ Donc $\overrightarrow{BC}\begin{pmatrix} 8\\ 6 \end{pmatrix}$ $\overrightarrow{AD}\begin{pmatrix} x_D-x_A\\ y_D-y_A \end{pmatrix}$; donc $\overrightarrow{AD}\begin{pmatrix} 4\\ 3 \end{pmatrix}$ Je Calcule $x_{\overrightarrow{BC}}\times y_{\overrightarrow{AD}}-x_{\overrightarrow{AD}}\times y_{\overrightarrow{BC}}=8\times 3-4\times 6$; $x_{\overrightarrow{BC}}\times y_{\overrightarrow{AD}}-x_{\overrightarrow{AD}}\times y_{\overrightarrow{BC}}=0$; Donc les vecteurs \overrightarrow{BC} et \overrightarrow{AD} sont colinéaires. Par conséquent les droites (BC) et (AD) sont parallèles	Les coordonnées des points : A B C D	Ecrit: • $\overrightarrow{BC}\begin{pmatrix} x_C - x_B \\ y_C - y_B \end{pmatrix}$ • $\overrightarrow{AD}\begin{pmatrix} x_D - x_A \\ y_D - y_A \end{pmatrix}$ • $x_{\overrightarrow{BC}} \times y_{\overrightarrow{AD}} - x_{\overrightarrow{AD}} \times y_{\overrightarrow{BC}} = 0$ III $3pts$	 \$\overline{BC}\binom{8}{6}\$ \$\overline{AD}\binom{4}{3}\$ les vecteurs \$\overline{BC}\$ et \$\overline{AD}\$ sont colinéaires. Les droites (BC) et (AD) sont parallèles IIII \$\overline{4pts}\$ 	9pts
b) Je détermine la nature du quadrilatère $ABCD$ -De la réponse aux questions 8-b) et 9-a) on a $\{(AB) \perp (BC)\}$ Donc on conclut que le quadrilatère $ABCD$ est un trapèze rectangle.	Les droites : • (AB) • (BC) • (AD) • Le quadrilatère AB CD IIII 2pts	 Utilise une méthode appropriée pour justifier que ABCD est un trapèze rectangle I 1pts 	Trouve $ \{(AB) \perp (BC) \\ \bullet \ \{(AD) \parallel (BC) \} $ $ \bullet \ ABCD \text{ est un trapèze rectangle} $ $ II \ 2 pts $	5pts
c-) Je calcule l'aire \mathcal{A} de la surface du domaine d'installation de l'entreprise. $\mathcal{A} = \frac{(AD+BC)\times AB}{2}$ $AD = \sqrt{(x_D - x_A)^2 + (y_D - y_A)^2}$	 Le domaine d'installation Les coordonnées des points A et D 	Pose • $AD = \sqrt{(x_D - x_A)^2 + (y_D - y_A)^2}$	Trouve • $AD = 5 dam$ • $A = 35,5 dam^2$	

$AD = \sqrt{25}$; $AD = 5$ dam Ainsi : $\mathcal{A} = \frac{(5+10)\times 5}{2}$; $\mathcal{A} = 35,5$ dam^2 ;.	• AB • BC IIII 2pts	$ \bullet \mathcal{A} = \frac{(AD+BC)\times AB}{2} $ II $ 2pts $	2 pts	6pts
Total	40 Ca = 20pts $1Ca = 0,50pt$	-	40Co = 40pts $1Co = 1pt$	90pts